Combining RMT-based filtering with time-stamped resampling for robust portfolio optimization
نویسندگان
چکیده
Finding the optimal weights for a set of financial assets is a difficult task. The mix of real world constrains and the uncertainty derived from the fact that process is based on estimates for parameters that likely to be inaccurate, often result in poor results. This paper suggests that a combination of a filtering mechanism based on random matrix theory with time-stamped resampled evolutionary multiobjective optimization algorithms enhances the robustness of forecasted efficient frontiers.
منابع مشابه
Time-stamped resampling for robust evolutionary portfolio optimization
Traditional mean-variance financial portfolio optimization is based on two sets of parameters, estimates for the asset returns and the variance-covariance matrix. The allocations resulting from both traditional methods and heuristics are very dependent on these values. Given the unreliability of these forecasts, the expected risk and return for the portfolios in the efficient frontier often dif...
متن کاملA Robust Knapsack Based Constrained Portfolio Optimization
Many portfolio optimization problems deal with allocation of assets which carry a relatively high market price. Therefore, it is necessary to determine the integer value of assets when we deal with portfolio optimization. In addition, one of the main concerns with most portfolio optimization is associated with the type of constraints considered in different models. In many cases, the resulted p...
متن کاملRobustness-based portfolio optimization under epistemic uncertainty
In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This paper first proposes a ...
متن کاملRobust Portfolio Optimization with risk measure CVAR under MGH distribution in DEA models
Financial returns exhibit stylized facts such as leptokurtosis, skewness and heavy-tailness. Regarding this behavior, in this paper, we apply multivariate generalized hyperbolic (mGH) distribution for portfolio modeling and performance evaluation, using conditional value at risk (CVaR) as a risk measure and allocating best weights for portfolio selection. Moreover, a robust portfolio optimizati...
متن کاملMultiobjective Algorithms with Resampling for Portfolio Optimization
Constrained financial portfolio optimization is a challenging domain where the use of multiobjective evolutionary algorithms has been thriving over the last few years. One of the major issues related to this problem is the dependence of the results on a set of parameters. Given the nature of financial prediction, these figures are often inaccurate, which results in unreliable estimates for the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Computational Intelligence Systems
دوره 8 شماره
صفحات -
تاریخ انتشار 2015